Enhanced production of recombinant thermo-stable lipase in Escherichia coli at high induction temperature.
نویسندگان
چکیده
Thermostable microbial lipases are potential candidates for industrial applications such as specialty organic syntheses as well as hydrolysis of fats and oils. In this work, basic biochemical engineering tools were applied to enhance the production of BTL2 lipase cloned in Escherichia coli BL321 under control of the strong temperature-inducible λP(L) promoter. Initially, surface response analysis was used to assess the influence of growth and induction temperatures on enzyme production, in flask experiments. The results showed that temperatures of 30 and 45°C were the most suitable for growth and induction, respectively, and led to an enzyme specific activity of 706,000 U/gDCW. The most promising induction conditions previously identified were validated in fed-batch cultivation, carried out in a 2L bioreactor. Specific enzyme activity reached 770,000 U/gDCW, corresponding to 13,000 U/L of culture medium and a lipase protein concentration of 10.8 g/L. This superior performance on enzyme production was a consequence of the improved response of λP(L) promoter triggered by the high induction temperature applied (45°C). These results point out to the importance of taking into account protein structure and stability to adequately design the recombinant protein production strategy for thermally induced promoters.
منابع مشابه
Enhanced Expression of Recombinant Activin A in Escherichia coli by Optimization of Induction Parameters
Activin A is a member of the transforming growth factor β super family. Because of its extensive clinical usages, its recombinant production is beneficial. In this study, activin A was expressed in E. coli using the pET 21a expression vector. The optimization of the activin A production in E. coli was done by using the response surface methodology (RSM). At this stage, the effect of IPTG and la...
متن کاملEnhanced Production of Insulin-Like Growth Factor I Protein in Escherichia coli by optimization of five key factors
Abstract Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. The major objective of this study is over- production of recombinant human insulin-like growth factor I( rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. Up to now E. coli expression system has been widely us...
متن کاملEnhanced Production of Insulin-Like Growth Factor I Protein in Escherichia coli by optimization of five key factors
Abstract Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. The major objective of this study is over- production of recombinant human insulin-like growth factor I( rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. Up to now E. coli expression system has been widely us...
متن کاملThe Expression of Human Granulocyte Macrophage Colony Stimulating Factor by Heat-Induction in Escherichia coli
A self-regulated high-copy number plasmid containing chloramphenicol resistant gene, for the production of recombinant proteins under the regulation of bacteriophage ?pL promoter, was constructed. The designed 5024 base pair expression plasmid contained a heat sensitive repressor cI857 coding gene to regulate the function of ?pL promoter under heat shock induction. Using the constructed vector,...
متن کاملMaximizing Production of Human Interferon-γ in HCDC of Recombinant E. coli
Tuning recombinant protein expression is an approach which can be successfully employed for increasing the yield of recombinant protein production in high cell density cultures. On the other hand, most of the previous results reported the optimization induction conditions during batch and continuous culture of recombinant E. coli, and consequently fed-batch culture have received less attention....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein expression and purification
دوره 90 2 شماره
صفحات -
تاریخ انتشار 2013